DSP芯片基本结构|选择方法|DSP系统的特点-万丰源电子通
您好,欢迎来到维库 登录 | 免费注册

DSP芯片
阅读:300920时间:2011-03-17 20:09:53

  DSP芯片,即数字信号处理器(Digital Signal Processing)。是一种特别适合于进行数字信号处理运算的微处理器具。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片.

基本结构

  DSP芯片的基本结构包括:

  1.哈佛结构;2.流水线操作;3.专用的硬件乘法器;4.特殊的DSP指令;5.快速的指令周期。

  哈佛结构

  哈佛结构的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址,独立访问。与两个存储器相对应的是系统中设置了程序总线和数据总线,从而使数据的吞吐率提高了一倍。由于程序和存储器在两个分开的空间中,因此取指和执行能完全重叠。

  流水线与哈佛结构相关,DSP芯片广泛采用流水线以减少指令执行的时间,从而增强了处理器的处理能力。处理器可以并行处理二到四条指令,每条指令处于流水线的不同阶段。

  CLLOUT1,取指 N N-1 N-2,译码 N-1 N N-2,执行 N-2 N-1 N,专用的硬件乘法器,乘法速度越快,DSP处理器的性能越高。由于具有专用的应用乘法器,乘法可在一个指令周期内完成。

  特殊的DSP指令DSP芯片是采用特殊的指令。快速的指令周期哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令再加上集成电路的优化设计可使DSP芯片的指令周期在200ns以下。

选择方法

  一般而言,定点DSP芯片的价格较便宜,功耗较低,但运算精度稍低。而浮点DSP芯片的优点是运算精度高,且C语言编程调试方便,但价格稍贵,功耗也较大。例如TI的TMS320C2XX/C54X系列属于定点DSP芯片,低功耗和低成本是其主要的特点。而TMS320C3X/C4X/C67X属于浮点DSP芯片,运算精度高,用C语言编程方便,开发周期短,但同时其价格和功耗也相对较高。

  DSP应用系统的运算量是确定选用处理能力为多大的DSP芯片的基础。运算量小则可以选用处理能力不是很强的DSP芯片,从而可以降低系统成本。相反,运算量大的DSP系统则必须选用处理能力强的DSP芯片,如果DSP芯片的处理能力达不到系统要求,则必须用多个DSP芯片并行处理。那么如何确定DSP系统的运算量以选择DSP芯片呢?下面我们来考虑两种情况。

  1.按样点处理

  所谓按样点处理就是DSP算法对每一个输入样点循环一次。数字滤波就是这种情况。在数字滤波器中,通常需要对每一个输入样点计算一次。例如,一个采用LMS算法的256 抽头的自适应FIR滤波器,假定每个抽头的计算需要3个MAC周期,则256抽头计算需要256×3=768个MAC周期。如果采样频率为8kHz,即样点之间的间隔为125ms,DSP芯片的MAC周期为200ns,则768个MAC周期需要153.6ms的时间,显然无法实时处理,需要选用速度更高的DSP芯片。表1.3示出了两种信号带宽对三种 DSP 芯片的处理要求,三种DSP芯片的MAC周期分别为200ns、50ns和25ns。从表中可以看出,对话带的应用,后两种DSP芯片可以实时实现,对声频应用,只有第三种DSP芯片能够实时处理。当然,在这个例子中,没有考虑其他的运算量。

  2.按帧处理

  有些数字信号处理算法不是每个输入样点循环一次,而是每隔一定的时间间隔(通常称为帧)循环一次。例如,中低速语音编码算法通常以10ms或20ms为一帧,每隔10ms或20ms语音编码算法循环一次。所以,选择DSP芯片时应该比较一帧内DSP芯片的处理能力和DSP算法的运算量。假设DSP芯片的指令周期为 p(ns),一帧的时间为Dt (ns),则该DSP芯片在一帧内所能提供的最大运算量为 Dt/p条指令。例如TMS320LC549-80的指令周期为12.5ns,设帧长为20ms,则一帧内TMS320LC549-80所能提供的最大运算量为160万条指令。因此,只要语音编码算法的运算量不超过160万条指令,就可以在TMS320LC549-80上实时运行。

DSP系统的特点

  自第一个微处理器问世以来,微处理器技术水平得到了十分迅速的提高,而快速傅立叶交换等实用算法的提出促进了专门实现数字信号处理的一类微处理器的分化和发展。数字信号处理有别于普通的科学计算与分析,它强调运算处理的实时性,因此DSP除了具备普通微处理器所强调的高速运算和控制功能外,针对实时数字信号处理,在处理器结构、指令系统、指令流程上具有许多新的特征,其特点如下:

  (1) 算术单元

  具有硬件乘法器和多功能运算单元,硬件乘法器可以在单个指令周期内完成乘法操作,这是DSP区别于通用的微处理器的一个重要标志。多功能运算单元可以完成加减、逻辑、移位、数据传送等操作。新一代的DSP内部甚至还包含多个并行的运算单元。以提高其处理能力。

  针对滤波、相关、矩阵运算等需要大量乘和累加运算的特点,DSP的算术单元的乘法器和加法器,可以在一个时钟周期内完成相乘、累加两个运算。近年出现的某些DSP如ADSP2106X、DSP96000系列DSP可以同时进行乘、加、减运算,大大加快了FFT的蝶形运算速度。

  (2) 总线结构

  传统的通用处理器采用统一的程序和数据空间、共享的程序和数据总线结构,即所谓的冯?诺依曼结构。DSP普遍采用了数据总线和程序总线分离的哈佛结构或者改进的哈佛结构,极大的提高了指令执行速度。片内的多套总线可以同时进行取指令和多个数据存取操作,许多DSP片内嵌有DMA控制器,配合片内多总线结构,使数据块传送速度大大提高。

  如TI公司的C6000系列的DSP采用改进的哈佛结构,内部有一套256位宽度的程序总线、两套32位的数据总线和一套32位的DMA总线。ADI公司的SHARC系列DSP采用超级哈佛结构(Super Harvared Architecture Computer),内部集成了三套总线,即程序存储器总线、数据存储器总线和输入输出总线。

  (3) 专用寻址单元

  DSP面向数据密集型应用,伴随着频繁的数据访问,数据地址的计算也需要大量时间。DSP内部配置了专用的寻址单元,用于地址的修改和更新,它们可以在寻址访问前或访问后自动修改内容,以指向下一个要访问的地址。地址的修改和更新与算术单元并行工作,不需要额外的时间。

  DSP的地址产生器支持直接寻址、间接寻址操作,大部分DSP还支持位反转寻址(用于FFT算法)和循环寻址(用于数字滤波算法)。

  (4) 片内存储器

  针对数字信号处理的数据密集运算的需要,DSP对程序和数据访问的时间要求很高,为了减小指令和数据的传送时间,许多DSP内部集成了高速程序存储器和数据存储器,以提高程序和数据的访问存储器的速度。

  如TI公司的C6000系列的DSP内部集成有1M~7M位的程序和数据RAM;ADI公司的SHARC系列DSP内部集成有0.5M~2M位的程序和数据RAM,Tiger SHARC系列DSP内部集成有6M位的程序和数据RAM。

  (5) 流水处理技术

  DSP大多采用流水技术,即将一条指令的执行过程分解成取指、译码、取数、执行等若干个阶段,每个阶段称为一级流水。每条指令都由片内多个功能单元分别完成取指、译码、取数、执行等操作,从而在不提高时钟频率的条件下减少了每条指令的执行时间。

  (6) DSP与其它处理器的差别

  数字信号处理器(DSP)、通用微处理器(MPU)、微控制器(MCU)三者的区别在于:DSP面向高性能、 重复性、数值运算密集型的实时处理;MPU大量应用于计算机;MCU则适用于以控制为主的处理过程。

优点

  DSP的运算速度比其它处理器要高得多,以FFT、相关为例,高性能DSP不仅处理速度是MPU的 4~10倍,而且可以连续不断地完成数据的实时输入/输出。DSP结构相对单一,普遍采用汇编语言编程,其任务完成时间的可预测性相对于结构和指令复杂(超标量指令)、严重依赖于编译系统的MPU强得多。以一个FIR滤波器实现为例,每输入一个数据,对应每阶滤波器系数需要一次乘、一次加、一次取指、二次取数,还需要专门的数据移动操作,DSP可以单周期完成乘加并行操作以及3~4次数据存取操作,而普通MPU完成同样的操作至少需要4个指令周期。因此,在相同的指令周期和片内指令缓存条件下,DSP的运算送到可以超过MPU运算速度的4倍以上。

  正是基于 DSP的这些优势,在新推出的高性能通用微处理器(如Pentium、Power PC 604e等)片内已经融入了 DSP的功能,而以这种通用微处理器构成的计算机在网络通信、语音图像处理、实时数据分析等方面的效率大大提高。

应用

  自从DSP芯片诞生以来,DSP芯片得到了飞速的发展。DSP芯片高速发展,一方面得益于集成电路的发展,另一方面也得益于巨大的市场。在短短的十多年时间,DSP芯片已经在信号处理、通信、雷达等许多领域得到广泛的应用。目前,DSP芯片的价格也越来越低,性能价格比日益提高,具有巨大的应用潜力。DSP芯片的应用主要有:

  (1) 信号处理--如,数字滤波、自适应滤波、快速傅里叶变换、相关运算、频谱分析、卷积等。

  (2) 通信--如,调制解调器、自适应均衡、数据加密、数据压缩、回坡抵消、多路复用、传真、扩频通信、纠错编码、波形产生等。

  (3) 语音--如语音编码、语音合成、语音识别、语音增强、说话人辨认、说话人确认、语音邮件、语音储存等。

  (4) 图像/图形--如二维和三维图形处理、图像压缩与传输、图像增强、动画、机器人视觉等。

  (5) 军事--如保密通信、雷达处理、声纳处理、导航等。

  (6) 仪器仪表--如频谱分析、函数发生、锁相环、地震处理等。

  (7) 自动控制--如引擎控制、深空、自动驾驶、机器人控制、磁盘控制。

  (8) 医疗--如助听、超声设备、诊断工具、病人监护等。

  (9) 家用电器--如高保真音响、音乐合成、音调控制、玩具与游戏、数字电话/电视等

发展

  20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。

  数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。

  数字信号处理是围绕着数字信号处理的理论、实现和应用等几个方面发展起来的。数字信号处理在理论上的发展推动了数字信号处理应用的发展。反过来,数字信号处理的应用又促进了数字信号处理理论的提高。而数字信号处理的实现则是理论和应用之间的桥梁。

  数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。

  顾名思义,DSP主要应用在数字信号处理中,目的是为了能够满足实时信号处理的要求,因此需要将数字信号处理中的常用运算执行的尽可能快,这就决定了DSP的特点和关键技术。适合数字信号处理的关键技术:DSP包含乘法器、累加器、特殊地址产生器、领开销循环等;提高处理速度的关键技术:流水线技术、并行处理技术、超常指令(VLIW)、超标量技术、DMA等。从广义上讲,DSP、微处理器和微控制器(单片机)等都属于处理器,可以说DSP是一种CPU。DSP和一般的CPU又不同,最大的区别在于:CPU是冯.诺伊曼结构的;DSP是数据和地址空间分开的哈佛结构。

  世界上第一个单片 DSP 芯片应当是1978年 AMI公司发布的 S2811,1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个主要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980 年,日本 NEC 公司推出的μP D7720是第一个具有乘法器的商用 DSP 芯片。

  在这之后,最成功的DSP 芯片当数美国德州仪器公司(Texas Instruments,简称TI)的一系列产品。TI 公司在1982年成功推出其第一代 DSP 芯片 TMS32010及其系列产品TMS32011、TMS320C10/C14/C15/C16/C17等,之后相继推出了第二代DSP芯片TMS32020、TMS320C25/C26/C28,第三代DSP芯片TMS320C30/C31/C32,第四代DSP芯片TMS320C40/C44,第五代 DSP 芯片TMS320C5X/C54X,第二代DSP芯片的改进型TMS320C2XX,集多片DSP芯片于一体的高性能DSP芯片TMS320C8X以及目前速度最快的第六代DSP芯片TMS320C62X/C67X等。TI将常用的DSP芯片归纳为三大系列,即:TMS320C2000系列(包括TMS320C2X/C2XX)、TMS320C5000系列(包括TMS320C5X/C54X/C55X)、TMS320C6000系列(TMS320C62X/C67X)。如今,TI公司的一系列DSP产品已经成为当今世界上最有影响的DSP芯片。TI公司也成为世界上最大的 DSP 芯片供应商,其DSP市场份额占全世界份额近50%。目前,DSP处理器仍被TI、AGERE、ADI等占领,产品受外国大企业控制。国内发展DSP的厂商并不多,而主要的应用产品是DVD与无线电话等,因此国内DSP的产值并不高。而在产品应用上,目前重要的DSP应用产品,如移动电话、调制解调器、HDD等个人计算机与通讯领域应用产品,都是采用国际大厂的DSP solution。

  DSP技术应用到我们生活的每一个角落,从军用到民用,从航空航天到生产生活,都越来越多地使用DSP。

  DSP技术在航空航天方面,主要用于雷达和声纳信号处理;在通信方面,主要用于移动电话、IP电话(voice over IP)、ADSL和HFC的信号传输;在控制方面,主要用于电机控制、光驱和硬盘驱动器;在测试/测量方面,主要用于虚拟仪器、自动测试系统、医疗诊断等;在电子娱乐方面,主要用于高清晰度电视(HDTV)、机顶盒(STB)、AC-3、家庭影院、DVD等应用;还有数字相机、网络相机等等都应用了DSP技术。同时,SOC芯片系统、无线应用、嵌入式DSP都是未来DSP的发展方向和趋势。可以说,没有DSP就没有对互联网的访问,也不会有多媒体,也没有无线通信。因此,DSP仍将是整个半导体工业的技术驱动力。现在,DSP应用领域不断拓宽,其函盖面包括宽带Internet接入业务、下一代无线通信系统的发展、数字消费电子市场、汽车电子市场的发展等诸多多方面。

  DSP的开发工具包括各种仿真软件、调试软件、硬件仿真器、评估板、初学者实验套件、教学套件等。国外有一些DSP的咨询公司及网站,他们起到DSP用户和DSP芯片供应商、DSP第三方之间的桥梁作用,也会为客户提供设计、提供软件和硬件及出版资料图书,有些还办培训班。国内也有不少DSP论坛,以便用户之间进行DSP技术的交流。

  中国DSP市场增长迅速,在DSP应用方面中国一直保持着与国际上DSP技术同步的态势,从DSP芯片面世开始,中国就有单位应用、销售DSP芯片。随着中国社会数字化、信息化的进展和中国经济的持续稳定增长,刺激了电子信息产业和市场的快速发展,推动了DSP的广泛应用。

万丰源电子通,电子知识,一查百通!

已收录词条13949

一周热门词条排行